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The modified Rabinowitsch–Mooney equation together with the corresponding relations for consistency
variables has been adopted for approximate solution of momentum transfer between generalized
Newtonian fluid with laminar flow and surface of fluidized bed of spherical particles inclusive of
wall surface. The solution has been concretized for a fluid characterized by power-law and Ellis flow
models in the creeping flow region. The range of values of ratios of particle diameter to column
diameter and that of porosity values ε in which the suggested relation satisfactorily agrees with ex-
perimental results for pseudoplastic fluids have been delimitated experimentally.

Two exactly valid equations of Rabinowitsch–Mooney type, viz. for a flow through a
tube1,2 and that through a planar slot3, are available for solving the problem of momen-
tum transfer between a Generalized Newtonian Fluid (GNF) with laminar flow and a
solid surface. Both these systems are characterized by a stress distribution which is
independent of flow properties of GNF and, hence, is the same in the flow of a Newto-
nian Fluid (NF) and analogous flow of GNF. In systems of different geometry, such as,
e.g., the flow of GNF through a fixed bed of particles4,5, fall of particles in GNF
(refs6,7), or flow through channels of noncircular cross section geometry8, where the
modified Rabinowitsch–Mooney equations are adopted, the agreement between stress
distribution in NF flow and analogous GNF flow must be supposed. Then it is possible
to approximately solve, using the results valid for NF, also the problems of GNF by the
procedures described in refs4–8.

The aim of the present work is to use the modified Rabinowitsch–Mooney equation
also for the purposes of solution of momentum transfer in the system GNF–fluidized
bed of spherical particles in the creeping flow region.

THEORETICAL

The paper4 solves the problem of momentum transfer in the system GNF–fixed bed of
particles by adopting the Rabinowitsch–Mooney equation,
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Dw ≡ 2uch
 ⁄ lch = 4 ⁄ τw

3  ∫  
0

τw

τ2D
.
(τ) dτ  , (1)

where Eq. (2) was derived for the consistency variable τw with the use of theoretical
idea of randomly arranged packing of particles which is defined9 in such a way that the
“planar” porosity (free area per unit of surface of planar cross section) is the same in
any planar section of the bed and is equal to volume porosity, and with application of
the integral scalar form of momentum balance4 valid for the situation where the time
change of momentum of fluid flowing through a reference area delimiting the investi-
gated system is equal to zero:

τw = ∆plch
 ⁄ L  . (2)

The characteristic linear dimension of system, lch, for a fixed bed of spherical par-
ticles is given by the relation

lch = ε ⁄ [ap (1 − ε) (1 + ψ) + aw] = εd ⁄ [6 (1 − ε) (1 + ψ) Mw]  , (3)

where the quantity ψ given by the ratio of shape and friction drag of bed of spherical
particles has been called the resistance number, and Mw is a correction factor for the
effect of walls given by the relation:

Mw = 1 + 4d ⁄ [6 (1 + ψ) (1 − ε) Dh]  . (4)

For a randomly arranged bed of particles, Eq. (6) follows for the characteristic veloc-
ity uch of the system from the equation of flow continuity in the form of Eq. (5)

Sbuch = Scu ≡ V
.
 (5)

uch = uSc
 ⁄ Sb ≡ u ⁄ ε  . (6)

The Rabinowitsch–Mooney equation in its application has the meaning of approxi-
mately valid integral form of rheological state equation of GNF or it is exactly valid
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(tube, planar slot). This equation and the equation of flow continuity (5) only apply to
an incompressible fluid (ρ = const).

Using the quantities ρ, uch, and τw, where τw represents the friction drag of unit area
bypassed, we can express the Reynolds number defined generally as a ratio of charac-
teristic magnitude of inertial forces of system to characteristic magnitude of friction
forces by the following relation.

ReRM = ρuch
2  ⁄ τw (7)

For a calculation of pressure drop of fixed bed, one must know the dependence of
resistance criterion ψ on the Reynolds number ReRM whose form must be determined
experimentally4. The value ψ = 1/2 was derived10 for the creeping flow region and for
NF, which value is presumed4 to apply to GNF, too.

Using Eqs (3) and (6), the consistency variables for a fixed bed of particles can be
expressed by the relations:

Dw = 2u [6 (1 + ψ) (1 − ε)] Mw
 ⁄ (dε2) (8)

τw = ∆pdε ⁄  L [6 (1 + ψ) (1 − ε)] Mw


  . (9)

In ref.6 the Rabinowitsch–Mooney type equation in the form (10) was derived with
the use of presumption of agreement of stress during flowing around a single spherical
particle by NF and by GNF:

Dw,p ≡ 2uch,p
 ⁄ d = (τw,p

1/2  ⁄ 2) ∫ τ−3/2

0

τw,p

 D
.
(τ) dτ  . (10)

The difference in form between relation (10) and the Rabinowitsch–Mooney equa-
tion (1) is due to the different relations for distribution of shear stresses during flow
through a tube and during flowing around a particle. For the tube, the shear stress
increases with increasing value of dimensionless distance from the axis of cylindrical
coordinate system, whereas for flowing around a single particle the shear stress de-
creases with increasing value of dimensionless distance from the centre of spherical
coordinate system6.

The equation (10) was also suggested6 for the purposes of calculation of fall velocity of
a particle in GNF provided the problem is symmetrical with respect to axis (in analogy
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to the Stokes approach11), i.e., if the particle does not perform the so-called secondary
movement. If it does, then the momentum balance must be extended by the moment of
momentum balance12.

In the case of a fall of a particle, relation (11) follows for the consistency variable
τw,p from the integral form of the balance:

τw,p = (ρs − ρ) gd ⁄ [6 (1 + ψ)]  . (11)

On the basis of the presumptions introduced, the resistance number ψ has the same
value in the creeping flow region as in the solution by Stokes11 (ψ = 1/2). Here the
characteristic velocity of system, uch,p, is the fall velocity of a single particle, ug.

Next it is necessary to transform the consistency variables Dw and τw for fixed bed
given by Eqs (8) and (9) and the correction factor for the effect of walls, Mw, given by
relation (4) to obtain such forms which would also be satisfactory for a fluidized bed
and which would be valid also for a single particle (u = ug) at the conditions of ε = 1
and d/Dh = 0. 

From the form of consistency variable Dw given by relation (8) it is obvious that its
value is equal to zero for the above-given conditions. Therefore it is necessary to re-
place the form of dependence (which is present here) upon the porosity multiplied by
the expression 6(1 + ψ) by another dependence, e.g., the simplest dependence of the
type εa. This transformation must be carried out for a concrete value of porosity ε,
which was done with the use of experimental results obtained with a random bed of
spherical particles10.

In ref.10 it was stated that the system of Eqs (1), (4), (8), and (9) is satisfactory for the
creeping flow of NF (ψ = 1/2, D

.
(τ) = τ/µ, where µ is dynamic viscosity) with sufficient

precision if the porosity of random fixed bed sufficiently precisely agrees with the
value given by relation

εch = 0.347 + 0.386d ⁄ D (12)

for d/D ≤ 0.25.
Since the presumption of random arrangement of particles is fulfilled exactly for the

condition d/D = 0 only, the porosity value of 0.347 represents the value corresponding
to this arrangement. This value agrees very well with the value of 0.348 suggested by
Denton13 for a random fixed bed of spherical particles.

With the use of the porosity value of 0.347 corresponding to random arrangement of
particles, the above-considered transformation equation will assume the form 0.347a =
0.3472/6(1 + ψ) (1 – 0.347) whose solution will give a = 3.29 + 2.18 log (1 + ψ).
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In similar way we can transform also Eq. (4) for the correction factor for effect of
walls, Mw, which looses its meaning for unit porosity. Here we will transform the
whole expression reflecting the effect of walls, and solution of the equation in the form
of 0.347b = 4/[6(1 + ψ) (1 – 0.347)] will lead to b = 2.18 log (1 + ψ) – 0.020.

Then the transformed kinematic consistency variable for fluidized bed can be ex-
pressed by relation

Dw,f = 2uMw,f
 ⁄ [dε3.29 + 2.18 log (1 + ψ)]  , (13)

where the transformed correction factor for effect of walls has the form:

Mw,f = 1 + dε2.18 log (1 + ψ) − 0.020 ⁄ Dh  . (14)

With the use of the presumption that there is no dissipation of mechanical energy due
to mutual collisions between particles in a randomly arranged fluidized bed and the
presumtion that the value of correction factor for effect of walls, Mw, is equal to one,
we obtain Eq. (15) for the pressure drop from the force balance:

∆p = L (1 − ε) (ρs − ρ) g  . (15)

On its introducing into Eq. (9) and replacing of correction factor Mw by factor Mw,f,
Eq. (16) is obtained for use in solving a fluidized bed:

τw,f = (ρs − ρ) gdε ⁄ [6 (1 + ψ) Mw,f]  . (16)

Next we presume that Eqs (13), (14), and (16) obtained by transforming the relations
valid for a fixed bed of particles, and simultaneously for a single particle (ε = 1, Mw,f = 1),
will also be valid for the porosity region corresponding to fluidized bed up to certain
maximum values of d/Dh ratio whose value must be determined experimentally as it
was the case with random fixed bed.
The Rabinowitsch–Mooney equation (1) and the equation of Rabinowitsch–Mooney
type (10) can be expressed by a single relation in the form

Dw,f = (3 + Ω) ⁄ τw,f
2+Ω ∫  

0

τw,f

τ1+Ω D
.
(τ) dτ  , (17)

Generalized Newtonian Fluid–Fluidized Bed 1285

Collect. Czech. Chem. Commun. (Vol. 60) (1995)



where Ω = 1 for a flow through a tube and through an fixed bed4, whereas Ω = –5/2 for
a flowed-around or falling particle6.

Presuming that the dependence of dimensionless characteristic Ω upon porosity ε is
linear, its value for a randomly arranged fixed bed4 (ε = 0.347, Ω = 1) and single
particle either flowed-around or falling6 (ε = 1, Ω = –5/2) can be determined with the
help of relation

Ω = −5.36ε + 2.86  , (18)

which is supposed to be also applicable to a porosity region corresponding to fluidized
bed.

Using the presumption of agreement between stress distribution during flow of NF
and GNF through a fluidized bed of particles, one can adopt Eq. (17), where the value
of Ω is given by Eq. (18), for a fluidized bed, too, the value of ψ number in Eqs (13),
(14), and (16) being again 1/2 in the creeping flow region.

As it follows from the given forms of equations of Rabinowitsch–Mooney type (1),
(10), (17), these equations will be readily solved for such flow models in which the
shear rate D

.
 is an explicit function of shear stress τ.

For the power-law flow model (D
.
(τ) = (τ/K)1/n, where K and n are parameters of the

model) the solution of Eq. (17) gives

Dw,f = [n (3 + Ω) ⁄ (1 + 2n + Ωn)] (τw,f
 ⁄ K)1/n  , (19)

whereas for the Ellis model (D
.
(τ) = τ[1 + (τ/τ1/2)α–1]/η0 , where η0, τ/τ1/2, and α are

parameters of the model) it gives

Dw,f = τw,f [1 + (3 + Ω) (τw,f
 ⁄ τ1 ⁄ 2)α−1 ⁄ (2 + α + Ω)] ⁄ η0  , (20)

where the consistency variables are given by relations (13) and (16) in which the cor-
rection factor for effect of walls, Mw,f, is given by expression (14).

The justifiability of the equation system (13), (14), (16), and (18)–(20) suggested for
the purposes of solution of fluidized bed must be verified and delimited experimentally
for NF as well as for the power-law and Ellis’ fluids.
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EXPERIMENTAL

Experimental results presented in ref.14 were used for the verification of justifiability of the relations
given in Theoretical above. The fall velocities of glass beads whose physical properties are given in
Table I were measured in aqueous glycerol solutions and in aqueous solutions of hydroxyethylcellu-
lose Natrosol 250 MR (Hercules Powder Comp., Netherland) and Cellosize QP 40 (Union Carbide
Corp., U.S.A.), and in aqueous solution of methylcellulose Tylose MH 4000 (Hoechst, Germany).
Columns of 8, 4, and 2 cm diameter were used for the measurements. In the experiments with
fluidized bed, its height was determined as a function of volume flow rate of fluid. From the values found
in this way, the experimental porosity value was obtained with the use of the relation εexp = 1 – Vp/(LSc),
where the volume of particles, Vp, was determined from their weight and density.

The flow curves were measured with the help of a rotation rheometer with coaxial cylinders, Reotest 2.
The zero shear rate viscosity η0 of the model fluids was measured with a capillary viscosimeter of
our own construction15. Tables II and III give the characteristics of fluids used and the parameters
determined for the flow model used.

TABLE I
Physical properties of particles

Particle
No.

d, mm ρs, kg m–3 Particle
No.

d, mm ρs, kg m–3

1 1.465 2 506 3 2.024 2 515

2 1.923 2 527 4 2.949 2 514

TABLE II
Properties of adopted solutions and range of shear rate D

.
 used for determination of parameters of

flow models (see Table III)

Solution No. Composition Density ρ, kg m–3 D
.
, s–1

1 92% Glycerol 1 240 –

2 0.6% Natrosol 250 MR 1 001 49–218

3 0.6% Natrosol 250 MR 1 001 49–218

4 0.8% Natrosol 250 MR 1 002 49–218

5 1.0% Natrosol 250 MR 1 002  9– 73

6 1.0% Natrosol 250 MR 1 002  9– 73

7 0.7% Tylose MH 4000 1 000 49–218

8 0.8% Tylose MH 4000 1 001 27–122

9 0.9% Tylose MH 4000 1 001 27–122

10 1.2% Tylose MH 4000 1 002  9– 73

11 1.6% Cellosize QP-40 1 003 49–218
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RESULTS AND DISCUSSION

For evaluation of agreement between the results of our own experiments or those given
in ref.16 with the approach suggested, the mean relative deviation was used:

δ = 1 ⁄ N ∑ 
i=1

N

|δi|  , (21)

where the per cent relative deviation between the experimental value of porosity, εexp,
and the calculated value εcalc is given by the relation:

δi = (εexp
 ⁄ εcal − 1) . 100%  . (22)

Newtonian Fluid

Substitution for the consistency variables Dw,f and τw,f using relations (13) and (16),
where the correction factor for effect of walls, Mw,f, is given by relation (14), in Eq. (19),

TABLE III
Parameters of power-law flow model and Ellis flow model

Solution No.
Power-law model Ellis model

n K, Pa sn η0, Pa s τ1/2, Pa α

1 1   0.273 0.273 – 1   

2 0.76 0.141 0.067 9.33 2.29

3 0.86 0.112 0.081 6.62 2.00

4 0.78 0.235 0.162 10.1  1.84

5 0.70 1.01 1.04 5.02 2.00

6 0.70 1.06 1.11 4.95 1.92

7 0.82 0.176 0.94 28.5  2.16

8 0.88 0.254 0.200 26.6  1.98

9 0.84 0.283 0.204 24.8  1.85

10 0.88 0.770 0.75 27.4  1.82

11 0.93 0.130 0.140 96.0  1.92
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where n = 1 and K ≡ µ, after modification provides Eq. (23) for the creeping flow
region (ψ = 1/2) and for column of circular cross-section (Dh = D):

(ρs − ρ) gd2ε4.67 ⁄ [µu (1 + dε0.364 ⁄ D)2] = 18  . (23)

This relation is, for the condition of d/D = 0, practically identical with that suggested
by Lewis et al.17 in which the experimentally determined numerical value of porosity
exponent is 4.65. The same value was also experimentally obtained by Richardson and
Zaki18 and its justifiability is proved by other authors (e.g., refs19–21).

Moreover, results of our own experiments14 and those by Andersson16 were used to
verify the justifiability of Eq. (23) and to determine the maximum value of d/D ratio
delimiting the satisfactory fulfilment of the presumption of random arrangement of par-
ticles in fluidized bed. The results by Andersson were used because he dealt with the
effect of d/D ratio within the largest range (0.025–0.308) and because these results are
presented graphically in such scale that they can be read (and used) with sufficient
accuracy.

The results of our own experiments (in the form of relative deviation) are given in
Fig. 1 for the value of ratio d/D = 0.073. From the figure its can be seen that the
deviations assume both positive and negative values, and a satisfactory agreement of
the approach suggested with experiment is also evidenced by the low value of mean
deviation δ = 0.7% for N = 22. The results by Andersson16 show a similar agreement
within the range of values d/D ∈  (0.025; 0.052) where the value of deviation δ varied
from 0.8 to 1.3%.

0.4            0.5            0.6            0.7           0.8            0.9

 20

 10

  0

–10

–20

ε

δi, %

FIG. 1
Dependence of relative deviation δi on porosity
ε: ❍  our own experiments for d/D = 0.073, ●
experiments by Andersson16 for d/D = 0.093
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The experimental results by Andersson16 for the next higher value of d/D measured
by him are also given in Fig. 1. It can be seen that the absolute values of deviations are
considerably higher as compared with the results of our own experiments for the value
of ratio d/D = 0.073 and, beside that, they depend on the bed porosity, hence the ap-
proach suggested is no more satisfactory for the value of ratio d/D = 0.093.

The negative sign of deviations indicates that the given bed of particles has a lower
resistance than a bed whose behaviour satisfactorily corresponds to the idea of ran-
domly arranged bed. A similar phenomenon is encountered also with the fixed bed
when the critical value of ratio d/D = 0.25 is exceeded and the non-arranged bed of
particles is transformed into an arranged bed forming channels, which is connected
with an abrupt decrease in drag of the bed10.

The above-mentioned facts allow the conclusion that exceeding of the value of d/D
ratio, found somewhere between the values 0.073 and 0.093, presumably results in
formation of channels in a fluidized bed, too, the effect of these channels being the
highest in the region of the lowest bed porosity values.

As there are no further experimental results available between the d/D ratio value
measured by us (0.073) and that measured by Andersson16 (0.093), let us preliminarily
restrict the justifiability of the relation suggested to the values of ratio d/D < 0.083.

Moreover, the range of validity of the relation suggested should be limited by the
minimum and the maximum porosity of fluidized bed whose values will obviously be
best determined experimentally.

Results of our experiments carried out both in the creeping flow region and in region
of manifestation of inertial forces of system14 led to the value of εmin ≈ 0.42, whereas
the results by Andersson16 lead to the value of εmax ≈ 0.93.

Generalized Newtonian Fluid

Substitution of the consistency variables Dw,f and τw,f using relations (13), (14), and
(16) in relation (19) gives Eq. (24) for the creeping flow region (ψ = 1/2) and for a
column of circular cross section (Dh = D):

2u (1 + dε0.364 ⁄ D) ⁄ (dε3.67) = 

= n (3 + Ω) 

 (ρs − ρ) gdε ⁄ [9K (1 + dε0.364 ⁄ D)]




1 ⁄ n
 ⁄ (1 + 2n + Ωn)  . (24)

Analogous substitution in Eq. (20) and modification gives Eq. (25):

18uη0 (1 + dε0.364 ⁄ D)2 ⁄ [(ρs − ρ) gd 2ε4.67] = 
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= 1 + (3 + Ω) 

 (ρs − ρ) gdε ⁄ [9τ1 ⁄ 2 (1 + dε0.364 ⁄ D)]α−1



 ⁄ (2 + α + Ω)  . (25)

These relations along with Eq. (18) were used for the calculation of porosity εcalc,
using our experiments14 with beds of particles in the range of values d/D < 0.083 for
verification of relations (24) and (25). The characteristics of the systems used, namely
the types of fluid and particles and the value of d/D ratio, are given in Table IV.

TABLE IV
Experimental results

Solution No. Particle No. d/D N δP, % δE, %

2 1 0.073 8 2.8 3.3

3 1 0.037 15 2.9 2.9

0.073 9 3.2 3.2

4 1 0.018 9 2.5 0.9

0.037 8 3.0 3.1

0.073 7 1.2 3.1

5 1 0.018 5 1.3 3.2

0.037 3 2.1 5.3

0.073 4 2.1 2.3

6 3 0.025 3 2.6 1.2

0.050 3 0.8 2.2

7 1 0.073 16 4.8 1.2

8 4 0.037 14 2.6 1.9

0.073 12 1.6 2.0

9 1 0.037 12 2.2 4.0

0.073 10 1.3 3.2

9 4 0.074 13 1.6 2.1

10 1 0.018 9 1.5 0.9

0.037 8 1.6 0.7

0.073 7 3.0 2.2

11 2 0.049 19 1.6 1.6

N = 194 δP = 2.3 δE = 2.3
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Experimental results for one of the solutions with the lowest value of flow index n = 0.70
and three values of d/D ratio are given in Fig. 2 in the form of relative deviation δi. It
can be seen that experimental results agree satisfactorily with the approach suggested
up to the bed porosity value ε ≈ 0.6. However, above this value, the magnitude of
deviation increases with increasing porosity value and it depends on the value of d/D
ratio. With regard to the negative sign of the deviation it is possible (as it was the case
in the above-discussed effect of value of d/D ratio in the system NF–fluidized bed) to
infer a bed again forming channels, which could readily be observed in this case14.

A similar course of dependence of relative deviation δi upon porosity was found in
other systems, too, the maximum porosity value εmax (whose crossing is connected with
formation of channels in the fluidized bed) being increased with increasing value of the
flow index n.

The dependence of this maximum value of porosity, εmax, on the value of flow index
n can approximately be expressed by the relation

εmax = 0.93 − 0.96 (1 − n)0.75 (26)

for 0.7 < n < 0.93, where the numerical value 0.93 represents the maximum value of
porosity of fluidized bed for a Newtonian fluid (n = 1).

The course of this dependence together with experimental εmax values is given in Fig. 3
for all the fluids given in Table III.

Whereas a power-law fluid is transformed into Newtonian fluid for n = 1, where K = µ,
Ellis’ fluid is transformed into Newtonian fluid for α = 1 and τ1/2 → ∞, where η0 = µ.

0.4                      0.5                       0.6                       0.7                      0.8ε

 30

 20

 10

  0

–10

–20

–30

δi, %

FIG. 2
Dependence of relative deviation δi on porosity ε for solution of Natrosol 250 MR with flow index
n = 0.70: ❍  d/D = 0.073, ●  d/D = 0.037, ∆d/D = 0.018
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On the basis of this comparison it is expected that the maximum porosity εmax of Ellis’
fluid will depend on the parameters α and τ1/2 of the Ellis model. This dependence can
approximately be expressed by the relation,

εmax = 0.93 − 0.70τB
−0.19α (27)

for 1.6 . 10–4 < τB
−α < 4.6 . 10–2. Here τB = τ1/2/τ1, where τ1 = 1 Pa.

5               10–1                                               5

 100

 
  5

10–1

1 – n

0.93 – εmax

FIG. 3
Dependence of maximum value of porosity of
fluidized bed εmax on flow index n: ❍  Natrosol
250 MR, ●  Tylose MH 4000, ∆ Cellosize QP-350,
−−−− Eq. (26)

10–4                         10–3                          10–2                          10–1
τB
−α

 100

  

10–1

0.93 – εmax

FIG. 4
Dependence of maximum value of porosity of fluidized bed, εmax, on value of τB

–α quantity: ❍  Natrosol
250 MR, ●  Tylose MH 4000, ∆ Cellosize QP-350, −−−− Eq. (27)
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The course of this dependence together with experimental values of εmax is given in
Fig. 4.

Beside the maximum porosity value also the minimum porosity value must be given
to delimit satisfactory validity of relations (24) and (25). From the experimental re-
sults14 it was possible to determine the mean value of the minimum porosity εmin ≈ 0.46,
which is higher than the value of 0.42 found for NF.

Table IV gives (in the form of mean relative deviations for all the systems fluid–par-
ticle–column) the experimental results for the porosity values ε lower than those ob-
tained from relations (26) and (27).

From the table it is obvious that the values of mean relative deviations for the whole
data set are identical for the power-law and Ellis models: For the solutions of hydroxy-
ethylcellulose Natrosol and methylcellulose Tylose, the mean relative deviations are
identical (2.4%) in the power-law model, whereas in the Ellis model the deviations with
Natrosol solutions (2.8%) are higher than those with Tylose solutions (2.0%).

Hence the experiments with fluidized bed of spherical particles lead to the same
conclusion as those with fixed bed of particles5 where more complex flow models did
not offer any advantage over the simple power-law model either, and where the magni-
tude of deviation from the approach suggested also depended on the type of model fluid
used.

The approach suggested has an advantage over the procedures used so far (e.g.,
refs22–28) in that it is general. It is formulated independently of any concrete flow model
of GNF and it also involves the effect of walls, no empirical corrections being needed
in the relations suggested.

We also expect that the relations suggested will be applicable to the regions of mani-
festation of effect of Reynolds number provided the concrete form of the dependence
of ψ = ψ (ReRM) is known for the fluidized bed. Its course will have to be determined
(as it is the case in the approach to flow through a fixed bed4) from experimental results
obtained with NF and fluidized bed of spherical particles.

CONCLUSION

A qualitatively and quantitatively new approach has been suggested to the momentum
transfer in systems of GNF and fluidized bed of spherical particles. It is based on appli-
cation of a Rabinowitsch–Mooney type equation together with the corresponding rela-
tions for the consistency variables and for the fluidized bed. Its satisfactory validity has
been verified and delimited experimentally in the creeping flow region both for NF and
for pseudoplastic GNF characterized by the power-law flow model and Ellis’ flow
model.
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SYMBOLS

a exponent for transformation of consistency variable Dw

ap = 6/d specific surface of spherical particle, m–1

aw = 4/Dh specific surface of walls, m–1

b exponent for transformation of factor of effect of walls Mw

D column diameter, m
D
.

shear rate, s–1

Dh hydraulic diameter of column, m
Dw consistency variable for flow through a tube and fixed bed of particles, s–1

Dw,p consistency variable for fall of spherical particle, s–1

Dw,f consistency variable for fluidized bed, s–1

d diameter of spherical particle, m
g acceleration of gravity, m s–2

K parameter of power-law model, Pa sn

L bed height, m
lch characteristic linear dimension of system for flow through a tube and fixed bed, m
Mw correction factor for effect of walls in the case of fixed bed
Mw,f correction factor for effect of walls in the case of fluidized bed
N number of experiments
n parameter of power-law model
∆p pressure drop, Pa
ReRM Reynolds number of Rabinowitsch–Mooney type, Eq. (7)
Sc cross section of column, m2

Sb cross section of the bed, m2

u mean superficial velocity, m s–1

ug fall velocity of a single particle, m s–1

uch characteristic velocity of system for flow through tube and fixed bed, m s–1

uch,p characteristic velocity of system for fall of a single particle, m s–1

V
.

volumetric flow rate, m3 s–1

Vp volume of particles in bed, m3

α parameter of Ellis model
δ mean relative deviation
δi relative deviation of an individual measurement
ε = Sb/Sc porosity
εp the minimum bed porosity
µ dynamic viscosity, Pa s
ρ density of fluid, kg m–3

ρs density of particle, kg m–3

τ shear stress, Pa
τB dimensionless value of parameter of Ellis model τ1/2

τw consistency variable for flow through a tube and fixed bed, Pa
τw,p consistency variable for fall of spherical particle, Pa
τw,f consistency variable for flow through fluidized bed, Pa
τ1/2 parameter of Ellis model, Pa
η0 parameter of Ellis model, Pa s
ψ resistance number
Ω dimensionless parameter, Eq. (18)
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Indexes
calc calculated
ch characteristic
exp experimental
max maximum
E Ellis model
P power-law model
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